Manufacturer, Stockist, Supplier & Exporter of SS 17-4 PH/ Alloy 630 Round Bar
T630 is a 17-4 PH martensitic precipitation hardening stainless steel with a unique combination of high strength and good corrosive resistance. Supplied in either the H1075 (H580) aged condition with a tensile strength of 1000 Mpa minimum (HB 311 min.), or the H1150 (H620) double aged condition with a tensile strength of 930 Mpa minimum (HB 277 min.). It is characterised by high tensile strength and high yield strength obtained by solution annealing, followed by a single or double low temperature (precipitation) age hardening treatment. Coupled with a corosion resistance comparable to 304 austenitic stainless steel in many corrosive environments.630 in the H1075 (H580) aged condition can be re-aged if necessary at a higher temperature simply by heating at the required temperature for the required duration.630 in the H1075 (H580) And H1150 (H620) aged condition, can also be re-aged at a lower temperature by re-solution annealing, followed by age hardening at the required temperature for the required duration.It is used extensively by the Marine, Aerospace, Chemical, Petrochemical, Food Processing, Paper and general metalwork industries. Here it is employed for applications such as: Pump Shafts, Aircraft Fittings, Valve Stems, Hydraulic Fittings, Studs, Bushings, Screws, Fasteners, Couplings, Wear rings, Rollers and Food Handling Equipment etc.. Material Magnetic in all conditions.
Stainless steels are known as high-alloy steels. They contain about 4-30% of chromium. They are further divided into martensitic, austenitic, and ferritic steels. Another group of stainless steels are known as precipitation-hardened steels. They are a combination of austenitic and martensitic steels.
Grade 17-4 stainless steel is the most widely used steel of the precipitation hardening grade steels. It has high toughness, strength, and corrosion resistance.
Colour Code | Stocked Sizes | |
Salmon (Bar end) |
Stock Sizes | 15.88 mm to 304.8 mm diameter. |
Bar Finish | ||
Peeled, Cold Drawn, Turned and Centreless Ground. |
Related Specifications
Australia | AS 2837-1986-630 |
Germany | W.Nr 1.4542 X5CrNiCuNb17 4 W.Nr 1.4548 X5CrNiCuNb 17 4 4 |
Japan | JIS G4303 SuS 630 |
USA | AISI 630 AISI S17400 ASTM A564/A564M-99-630 SAE J467 17-4 PH UNS S17400 |
class=”shrink”
Chemical Composition
Min. % | Max % | |
Carbon | – | 0.07 |
Silicon | – | 1.00 |
Manganese | – | 1.00 |
Nickel | 3.00 | 5.00 |
Chromium | 15.00 | 17.50 |
Copper | 3.00 | 5.00 |
Niobium | 0.15 | 0.45 |
Phosphorous | – | 0.04 |
Sulphur | – | 0.03 |
Mechanical Test Requirements in Solution Annealed and Age Hardened Conditions – At Room Temperature
Condition | A | H900 (H480) | H925 (H495) | H1025 (H550) | H1075 (H580) | H1100 (H595) | H1150 (H620) | H1150M (H620M) | H1150D (H620D) | ||
Ruling Section |
Up to 200 mm | Up to 200 mm | Up to 200 mm | ||||||||
UTS Mpa (Min) |
1310 | 1170 | 1070 | 1000 | 965 | 930 | 795 | 860 | |||
Yield Mpa (Min) |
1170 | 1070 | 1000 | 860 | 795 | 725 | 502 | 725 | |||
Elongation % in 50mm (Min) |
10 | 10 | 12 | 13 | 14 | 16 | 18 | 16 | |||
Hardness | Rc | 38 Max | 40 | 38 | 35 | 32 | 31 | 28 | 24 | 24 | 33 Max |
BHN | 363 Max | 388 | 375 | 331 | 311 | 302 | 277 | 255 | 255 | 331 Max | |
Impact Charpy – V | ft/lbs (Min) | 5 | 15 | 20 | 25 | 30 | 55 | 30 | |||
Joules (Min) | 6.8 | 20 | 27 | 34 | 41 | 75 | 41 |
Mechanical Properties
Condition | A | H900 (H480) | H925 (H495) | H1025 (H550) | H1075 (H580) | H1100 (H595) | H1150 (H620) | H1150M (H620M) | H1150 (H620D) | |
UTS Mpa | 1100 | 1375 | 1310 | 1170 | 1140 | 1035 | 1000 | 860 | 950 | |
Yield Mpa | 900 | 1275 | 1205 | 1140 | 1035 | 930 | 860 | 600 | 800 | |
Elongation % in 50mm | 15 | 14 | 14 | 15 | 16 | 17 | 19 | 22 | 20 | |
Hardness | Rc | 36 | 44 | 42 | 38 | 36 | 35 | 33 | 27 | 31 |
BHN | 340 | 420 | 390 | 350 | 340 | 330 | 310 | 275 | 295 | |
Impact Charpy – V | ft/lbs | 30 | 15 | 25 | 35 | 40 | 45 | 50 | 100 | 90 |
Joules | 40 | 20 | 34 | 47 | 54 | 61 | 68 | 135 | 120 |
Refer Age Hardening temperature table
Low Temperature Properties
Retains relatively good ductility at sub zero temperatures, with impact properties greatly improved at higher ageing temperatures
Typical sub zero charpy V-notch impact properties
Test Temperature | oF | 10 | -40 | -112 | -148 | -320 |
oC | -12 | -40 | -80 | -100 | -196 | |
Impact Strength | H925 ft-lb |
16 | 9 | 5 | 5 | 3 |
(H495) J |
22 | 12 | 7 | 7 | 4 | |
H1025 ft – lb |
58 | 40 | 15 | 12 | 4 | |
(H550) J |
79 | 54 | 20 | 16 | 6 | |
H1150 ft – lb |
93 | 76 | 48 | 37 | 6 | |
(H620) J |
126 | 103 | 65 | 50 | 8 |
Cold Working
Cold bending etc. will be limited by the high yield strength in all conditions.
Corrosion Resistance
Superior to the martensitic stainless range in all conditions, and equal to 302 or 304 austenitic stainless grades in most environments.For optimum corrosion resistance, surfaces must be free of scale and foreign particles. Finished parts should be passivated.
Forging
Heat uniformly to 2150/2200oF (1177/1204oC) – Hold for 1 hour at temperature prior to commencing forging.Do not forge below 1850oF (1010oC). Finished forgings should be cooled in air to below 90oF (32oC) prior to further processing in order to obtain optimum grain size and mechanical properties.Finally forgings will require to be solution annealed prior to age hardening as required.
Heat Treatment
- Solution Annealed – Condition A
Heat to 1900 +/- 25oF (1040 +/- 15oC) – *Hold for 30 MinutesSections up to 75 mm – Oil Quench To Below 90oF (32oC) Sections over 75mm – Air Cool To Below 90oF (32oC)*Actual holding time should be long enough to ensure that the part is heated thoroughly through out its section - Dimensional Changes During Heat Treatment
Age hardening results in a slight dimensional contraction as follows:-Condition A to condition H900 (H480) – contraction 0.0004/0.0006 M/M Condition A to condition H1150 (H620) -contraction 0.0009/0.0012 M/M
Age Hardening
Material in the solution annealed condition may be age hardened as follows:-*Denotes Double Overaged
Condition | H900 (H480) | H925 (H495) | H1025 (H550) | H1075 (H580) | H1100 (H595) | H1150 (H620) | H1150M (H620M)* | Plus | H1150D (H620D)* | ||
Heat to | ±15oF | 900oF | 925 oF | 1025oF | 1075oF | 1100oF | 1150oF | 1400oF | 1150oF | 1150oF | |
±9oC | 480oC | 495oC | 550oC | 580oC | 595oC | 620oC | 760oC | 620oC | 620oC | ||
Hold for Hours | 1 | 4 | 4 | 4 | 4 | 4 | 2 | 4 | 4 | ||
Cool to Below 90oF (32oC) |
Air | Air | Air | Air | Air | Air | Air | Air | Air |
Notes on Heat Treatment And It’s Effect On Structure – Corrosion Resistance Etc
The martensitic transformation temperature range for this grade is:-
Ms- 270oF (132oC)
Mf- 90oF (32oC)
Therefore to ensure complete transformation to martensite, it is most important that parts are always cooled to below 90oF (32oC) within 24 hours following Solution Annealing and before Age Hardening Treatment which should also be followed by an air cool to below 90oF (32oC).
The age hardening tempers the martensite resulting in an improvement in toughness. The higher the ageing temperature the more refined the martensite leading to greater ductility but slightly lower strength.N.B. Temperature control is critical during age hardening and any variations outside the given range could lead to less than satisfactory results.In the solution annealed condition resistance to stress corrosion cracking is low – improving at age hardening temperatures from 1025oF (550oC) upwards to a maximum at 1150oF (620oC) double aged.
Machining
Machinability in the solution annealed condition is similar to 302 and 304 austenitic stainless steel grades.Machinablity in the H900 (H480) condition is limited, improving as the age hardening temperature is increased to optimum machinability similar to 304 austenitic stainless steel grade in the H1150 (H620) condition.
Removing Heat Tint
The heat tint formed during age hardening, whilst having little effect on corrosion resistance, may be removed when required for appearance purposes by pickling or electro polishing.
Grinding and Polishing
440C in the hardened and tempered condition requires care with finish grinding and polishing to avoid overheating as this can lower the hardness and corrosion resistance.
Elevated Temperature Use
Excellent oxidation resistance up to 1100oF (540oC).Exposure to temperature range 600 – 900oF (290 – 480oC) long term may result in reduced toughness but this can sometimes be minimilized by using higher ageing temperatures. As a general guide for short term exposure at elevated temperatures the ageing temperature should be at least 50oF (28oC) above the working temperature.
Welding
May be welded satisfactorily by shielded fusion and resistance welded processes, however oxyacetylene welding is not recommended due to the posibility of carbon pick up Filler metal when required should be similar to the parent metal if strength is important otherwise standard austenitic stainless filler wire 308L may be satisfactory. Pre-heating is not generally required.Welding in the solution annealed condition may be carried out satisfactorily, however welding in the H1150 (H620) condition reduces the effects of high welding stresses. Following welding in the solution annealed condition, parts can be directly age hardened as required, however those in the H1150 (H620) condition should be re-solution annealed and then age hardened as required.
Applications
- Nuclear reactor
- Aircraft and gas turbines
- Oil field
- Chemical process components
- Paper mill
Specifications
UNS S17400
ASTM A564
DIN 50602
AMS 5642
MIL-S-25043
Grade 630
WS 1.4542
ASME SA564
X5CrNiCuNb16-4
AFNOR Z6CNU1704
FountainHead Alloys is ISO 9001:2015 approved.
© FountainHead Alloys 1996